Direct measurement of Dirac point energy at the graphene/oxide interface.

نویسندگان

  • Kun Xu
  • Caifu Zeng
  • Qin Zhang
  • Rusen Yan
  • Peide Ye
  • Kang Wang
  • Alan C Seabaugh
  • Huili Grace Xing
  • John S Suehle
  • Curt A Richter
  • David J Gundlach
  • N V Nguyen
چکیده

We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-atom thick graphene layer was possible by taking advantage of the constructive optical interference in the SiO(2) cavity. The photoemission yield was found to follow the well-known linear density-of-states dispersion in the vicinity of the Dirac point. At the flat band condition, the Fermi level was extracted and found to reside 3.3 eV ± 0.05 eV below the bottom of the SiO(2) conduction band. When combined with the shift of the Fermi level from the Dirac point, we are able to ascertain the position of the Dirac point at 3.6 eV ± 0.05 eV with respect to the bottom of the SiO(2) conduction band edge, yielding a work function of 4.5 eV ± 0.05 eV which is in an excellent agreement with theory. The accurate determination of the work function of graphene is of significant importance to the engineering of graphene-based devices, and the measurement technique we have advanced in this Letter will have significant impact on numerous applications for emerging graphene-like 2-dimensional material systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی ابتدا به ساکن جذب سطحی نانو زنجیره نقره بر روی گرافین

In this paper, the long-range Van Der Walls dispersion force correction (vdW-DF) for a combined system consisting of an Ag-chain adsorbed on a monolayer of graphene is studied. Calculations are based on density functional theory (DFT) performed by using various LDA, PBE and BLYP approximations. Since Ag chain is weakly adsorbed on graphene sheet, the Van Der Waals contribution to the total adso...

متن کامل

Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions

In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by ...

متن کامل

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...

متن کامل

New insights into the density of states of graphene oxide using capacitive photocurrent spectroscopy

Capacitive photocurrent spectroscopy is used to probe the electronic states of grapheneoxide, and reduced graphene-oxide. Three peaks are observed whose intensities scale with the oxygen coverage. The energy of these peaks correlate with the luminescence spectra reported for graphene-oxide. Using a fitting procedure, the density of states for graphene oxide is extracted from the data. It consis...

متن کامل

SADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT

A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2013